Agent based modelling approach applied to the investment decision making of the industrial sector

Sara Budinis*, Sara Giarola, Julia Sachs and Adam Hawkes

*Sustainable Gas Institute - Imperial College London
*s.budinis11@imperial.ac.uk
• Conclusions: «limited access to capital reduces the pace of decarbonisation»

• Why?
 • Carbon Capture and Storage (CCS) is (currently still) expensive
 • New green technologies are (initially) expensive

Not all the enterprises can afford them

Content list:
• Outlook on the industrial sector with a focus on the chemical sub-sector
• MUSE framework (ModUlar energy system Simulation Environment)
• Agent Based Modelling
• Case study
• Results
• Summary and conclusions
Conclusions: «limited access to capital reduces the pace of decarbonisation»

Why?
• Carbon Capture and Storage (CCS) is (currently still) expensive
• New green technologies are (initially) expensive

Not all the enterprises can afford them

Content list:
• Outlook on the industrial sector
• MUSE framework (ModUlar energy system Simulation Environment)
• Agent Based Modelling
• Case study and agents definition
• Results
• Conclusions
Outlook on the industrial sector
Global industrial sector*:
- 36% TFEC (154 EJ)
- 24% CO2 emissions (8.3 GtCO2)
- Current growth TFEC: 1.5% annual (expected for 2DS target: 1.2%)
- **KEY: Decoupling of industrial production from CO2 emissions**
 - Regional perspective: non-OECD countries (China)
 - Sectorial perspective: chemicals (third most emitting subsector 13%)

Chemicals and petrochemicals*:
- 28% industrial TFEC (largest energy user)
- HVC, ammonia and methanol alone: 73% chemical TFEC
- Current growth: HVC 19%, ammonia 13%, methanol 51%
- Bio-based routes present promising avenues for decarbonisation however mainly at pilot scale

*IEA: ETP 2017 (data: 2014)
Case study: ammonia production:

- 88% ammonia demand due N-fertiliser demand
- Main producers: China (34% w/w), Russia (8%), USA (7%) and India (7%)
- Main feedstocks: gas (39%), coal (35%) and heavy oil (3%). Currently biomass-based ammonia production at pilot scale

China:

- China: feedstocks: 71% coal, 21% natural gas, 8% heavy oil
- Preferential policies due to strategic role for food security; satisfies internal demand
- Huge variety of production technologies (performance, consumption, emissions)

MUSE framework: ModUlar energy system Simulation Environment
MUSE framework:

- Covers all the sectors in the energy system (highly disaggregated)
- Global scale with regional disaggregation
- Simulation with time horizon 2010 to 2100
- Modular: Each sector is modelled in a way that is appropriate for that sector
- Engineering-led and technology-rich with a bottom-up technoeconomic characterization
- Microeconomic foundations: all sectors agree on price and quantity for each energy commodity
- Partial equilibrium on the energy system (models supply and demand)
- Policy instruments modelled (e.g. carbon price, subsidies)
MUSE Industrial Sector Module (ISM):

- Sector: Industrial
- Subsector: e.g. Chemical
- Commodity: e.g. Ammonia
- Technology: e.g. Coal-based ammonia

Exogenous inputs:
- Macroeconomic drivers
- Assumptions on policies
- By asset type: Cost, Efficiency, Emissions, Operational constraint, Existing stock, Retirement profile

Specific Outputs:
- Aggregated CAPEX
- Aggregated OPEX
- By asset type: Production, Emissions, Capacity

Data exchange with Market Clearing Algorithm (MCA):
- ISM provides demand for fuels and emissions
- MCA provides supply costs of fuels, carbon price

Further options including:
- Choice of feedstock
- CCS availability

28 regions, 15 commodities, 200 technologies
Agent Based Modelling
Investment decision within MUSE:

- Start
- Calculate future stock of assets & amount decommissioned
- Demand forecast for end-uses
- Production simulation to meet demand
- Are new assets needed? (YES/NO)
 - Yes: Future demand
 - No: No investment needed
 - Outputs
 - End
Investment decision within MUSE:

1. **Future demand**
 - Demand forecast for end-uses
 - Production simulation to meet demand
 - Are new assets needed?
 - **YES**
 - Calculate future stock of assets & amount decommissioned
 - **NO**
 - No investment needed
 - Outputs
 - end

2. **Determine how many new technologies and retrofits are needed**
 - Get potential new assets
 - Search for potential assets
 - Calculate decision metric
 - Apply decision rule
 - Amount of potential new assets
 - Commit new assets
 - Outputs
 - end

Options:
- One agent, or
- Multiple agents
Agent Based Modelling (ABM) approach:

- Each type of investors is an agent in the market, with a certain share. All the agents together form a population of agents.
- Each agent has different objectives e.g. economical (e.g. risk prone vs risk adverse), environmental friendliness.
- Each agent has different characteristics, called attributes e.g. decision strategy.
- Depending on objectives and attributes, the agent makes the investment decision in his/her search space.
Agent Based Modelling (ABM) approach:

- Each type of investors is an agent in the market, with a certain share. All the agents together form a population of agents.
- Each agent has different objectives e.g. economical (e.g. risk prone vs risk adverse), environmental friendliness.
- Each agent has different characteristics, called attributes e.g. decision strategy.
- Depending on objectives and attributes, the agent makes the investment decision in his/her search space.

\[A = \{Obj, DS, SP, PP\} \]

- \textit{Obj} objective:
 - Economic (capital, payback, NPV, etc.)
 - Environmental (energy consumption, CO2 emissions, etc.)
- \textit{DS} decision strategy:
 - One objective
 - Multiple objectives (weighted sum, epsilon constraint, lexicographic strategy)
- \textit{SP} search space:
 - All available alternatives
 - Same type of fuel
 - Popular alternatives (e.g. past decisions)
 - Mature alternatives
- \textit{PP} percentage of population e.g. initial market share
Case study
Case study: ammonia production:

- 88% ammonia demand due N-fertiliser demand
- Main producers: China (34% w/w), Russia (8%), USA (7%) and India (7%)
- Main feedstocks: gas (39%), coal (35%) and heavy oil (3%). Currently biomass-based ammonia production at pilot scale

China:
- China: feedstocks: 71% coal, 21% natural gas, 8% heavy oil
- Preferential policies due to strategic role for food security; satisfies internal demand
- Huge variety of production technologies (performance, consumption, emissions)

Case study: ammonia production:

- 88% ammonia demand due to N-fertiliser demand
- Main producers: China (34% w/w), Russia (8%), USA (7%) and India (7%)
- Main feedstocks: gas (39%), coal (35%) and heavy oil (3%). Currently biomass-based ammonia production at pilot scale
- China: feedstocks: 71% coal, 21% natural gas, 8% heavy oil
- Preferential policies due to strategic role for food security; satisfies internal demand
- Huge variety of production technologies (performance, consumption, emissions)

*SME and LE:
- Seek profit (investors)
- Own their assets
- Can decide if retrofitting existing assets or building new assets to meet demand
- Subjected to carbon price (rather than carbon budget)

Energy use

Feedstocks share

Market size by plant scale

Case study: ammonia production:

- 88% ammonia demand due to N-fertiliser demand
- Main producers: China (34% w/w), Russia (8%), USA (7%) and India (7%)
- Main feedstocks: gas (39%), coal (35%) and heavy oil (3%). Currently biomass-based ammonia production at pilot scale
- China: feedstocks: 71% coal, 21% natural gas, 8% heavy oil
- Preferential policies due to strategic role for food security; satisfies internal demand
- Huge variety of production technologies (performance, consumption, emissions)

SME and LE:
- Seek profit (investors)
- Own their assets
- Can decide if retrofitting existing assets or building new assets to meet demand
- Subjected to carbon price (rather than carbon budget)

Feedstocks share

Market size by plant scale
Relevant scenarios:

One agent (average):
- high NPV
- Zero carbon price
- Carbon Price

Two agents:
- LE (18% output): High NPV
- SME (82% output): Low CAPEX*

Results
Results: scenario 1

- Single agent: Aiming for high NPV
- Zero carbon price

![Capacity graph]

- Electrolysis
- NG + CCS
- NG
- HFO + CCS
- HFO
- Hard coal + CCS
- Hard coal
- Biomethane + CCS
- Biomethane

![CO2 graph]

- emitted
- captured
Results: scenario 2

- Single agent: Aiming for high NPV
- Carbon price
Results: scenario 3

- Two agents:
 - SME (82% output): Aiming for low CAPEX
 - LE (18% output): Aiming for high NPV

- Zero carbon price
Results: scenario 4

- Two agents:
 - SME (82% output): Aiming for low CAPEX
 - LE (18% output): Aiming for high NPV
- Carbon price

[Graphs showing capacity and CO2 emissions over years]
Results change case by case: full industrial sector

- Two agents:
 - SME (67% output): Aiming for low CAPEX
 - LE (33% output): Aiming for high NPV

Zero carbon price

Carbon price
Summary and conclusions
Conclusions: «limited access to capital reduces the pace of decarbonisation»

Why?
- Carbon Capture and Storage (CCS) is (currently still) expensive
- New green technologies are (initially) expensive

Not all the enterprises can afford them

- Limited access to capital for SME slows down the decarbonisation rate of the sector
 - Without carbon price, there is a limited reduction of CO2 emissions
 - A carbon price profile can further decrease CO2 emissions
 - If a carbon price is implemented without supporting access to capital for SME, then the decarbonisation will take longer

Further developments include:
- Multiple agents and objectives with a trade off against computational effort: agents refinement
- Downside: data availability? validation?
Acknowledgments:

Co-authors

Dr Sara Giarola
Research Fellow

Dr Julia Sachs
Research Associate

Dr Adam Hawkes
Co-Director

The authors acknowledge the financial support of the Sustainable Gas Institute, Imperial College London.
Agent based modelling approach applied to the investment decision making of the industrial sector

Sara Budinis*, Sara Giarola, Julia Sachs and Adam Hawkes
Sustainable Gas Institute - Imperial College London
*s.budinis11@imperial.ac.uk