

Cap-and-Trade in Practice:

An Analysis of North Carolina's Clean Smokestacks Act

Justin Larson

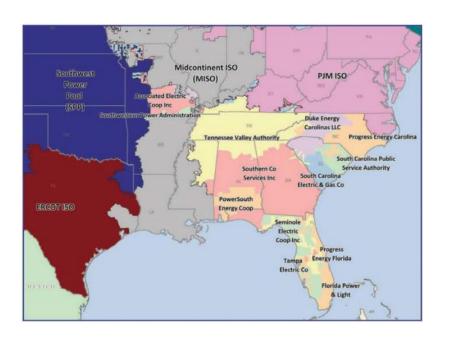
IEW 2018: Gothenburg, Sweden

Cap-and-Trade vs. Command-and-Control

- <u>Problem</u>: Negative externality from pollution harms society
- Policy Solutions: Command-and-control, Emissions Tax, & Cap-and-Trade

Existing Cap-and-Trade Programs:

- Acid Rain (SO₂) Program, Carlson et al (2000); <u>RECLAIM</u>, Fowlie et al (2012); <u>EU-ETS</u>, Bushnell et al (2013); <u>RGGI</u>, Murray and Maniloff (2015)
- North Carolina Clean Smokestacks Act (CSA)


Research Questions:

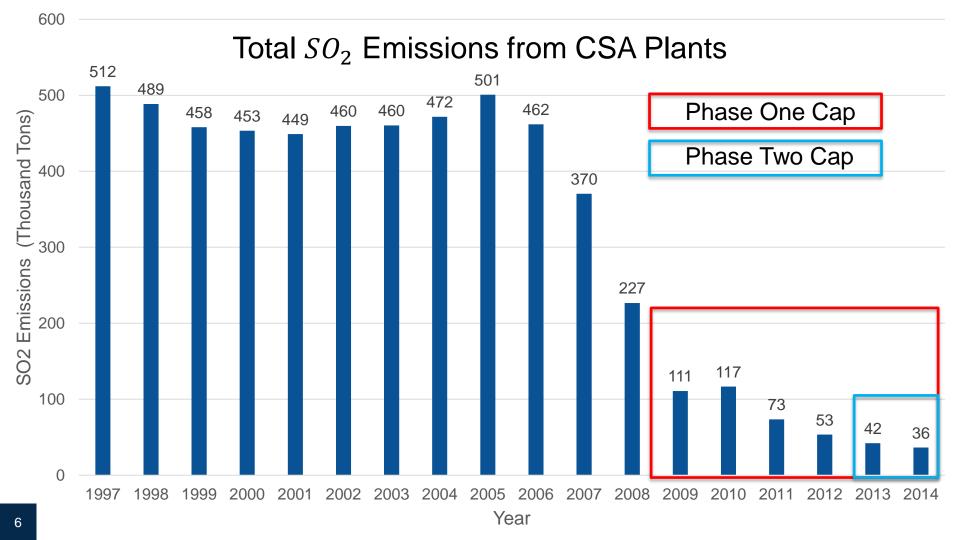
- How <u>effective</u> is the CSA in reducing emissions of SO_2 and NO_x at targeted plants?
- How prevalent is <u>leakage</u> when CSA plants are allowed to shift production to unregulated plants?
- How does the geographic distribution of emissions and subsequent <u>damages</u> change after the CSA?

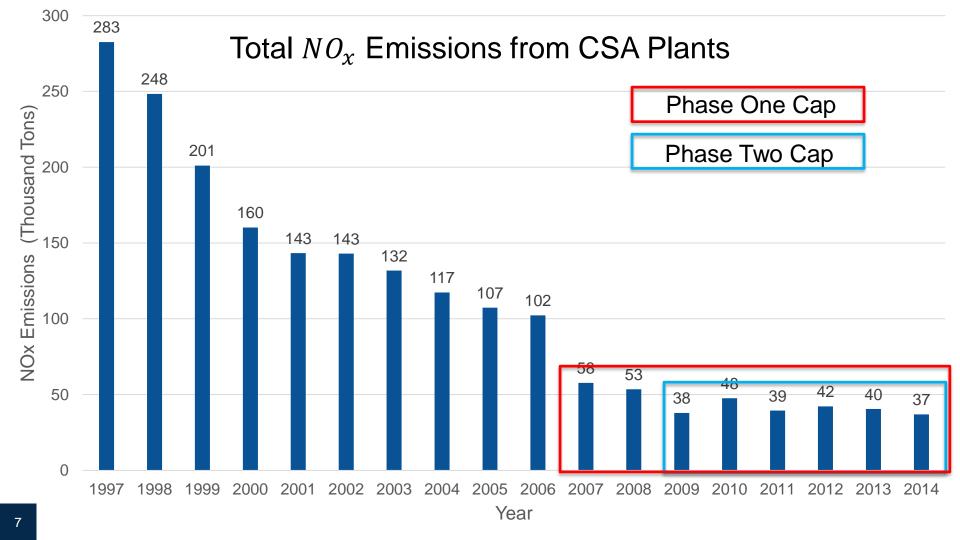
Clean Smokestacks Act (CSA)

- NC passed in 2002, reporting starts in 2003, first cap 2007
- Targets SO_2 and NO_x emissions
- Affects only coal-plants with >25 MW nameplate capacity
 - Utility level caps (Duke Power and Progress Energy)
- Cap-and-trade with limited trading:
 - Emissions can be "traded" across plants within the same utility but not between utilities
- Minimum compliance cost requirement and rates frozen
- Compliance cost recovery mechanism (amortized tax credit)
- Existing analyses:
 - Hoppock et al (2012), Andrews (2013)

Market Structure

Regulated rates:


- Dependent on costs
 - (e.g. capital investments)
- Rates expected to fall pre-CSA
- Interconnected grid:
 - Trade of electricity can occur throughout region
- Ease of trade:
 - South Carolina
 - Tennessee (TVA)
 - Virginia (PJM)


<u>Data</u>: U.S. Continuous Emissions Monitoring System (CEMS)

• Unit of observation:

- Hourly-unit level
- Aggregated to annual-plant level
- Observation window:
 - 1997-2014
- Pollutants:
 - *SO*₂
 - $-NO_{x}$
 - *CO*₂

- Emissions and Generation
 Resource Integrated Database
 (eGRID)
 - Plant Characteristics:
 - Fuel type
 - Nameplate Capacity
 - Number of Generators
 - Number of Boilers
 - Operator information
 - Regulatory region

Empirical Strategies

Effectiveness

- Difference-in-Differences (DiD)
 - Control Group: All coal plants in U.S. that are not in bordering states, RECLAIM, or RGGI
- Synthetic Control Method (SCM)
 - Number of boilers, name plate capacity, and number of generators

Leakage:

DiD with SC, TN, and VA as separate treatment groups.

Damage Estimates:

- Plant-specific effects estimated using SCM
- Use MD estimates from Muller and Mendelsohn (2009)

Effectiveness (DiD): SO_2 and NO_x Emissions

	SO_2	$ln(SO_2)$		NO_x	$ln(NO_x)$	
<u>Level</u>	-4.353	-1.318***	-73.23%	1.487	-0.627***	-46.58%
	(3.527)	(0.117)	-	(1.623)	(0.0701)	-
Rate	-0.288***	-1.119***	-67.34%	-0.0738***	-0.470***	-37.50%
	(0.0501)	(0.0737)	-	(0.0219)	(0.0595)	-

Note: State-clustered standard errors in parentheses.

*** p<1%, ** p<5%, and * p<10%.

Control group excludes neighboring states, RECLAIM, and RGGI states.

Effectiveness: Difference-in-Differences

Advantages:

- Simple to estimate
- Linear regressions are familiar to policy/decision makers

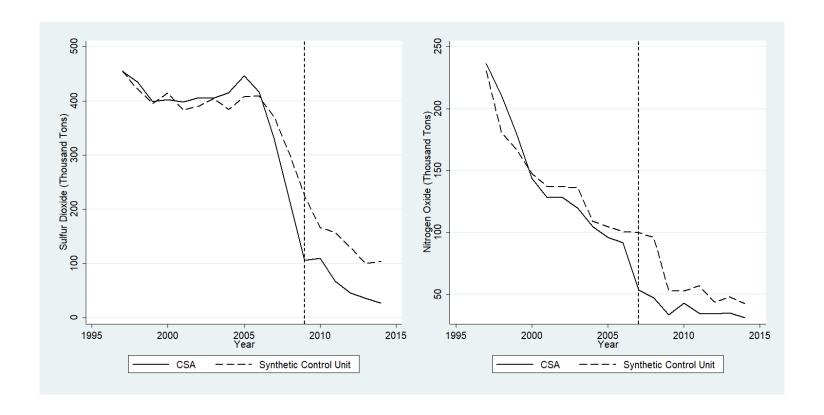
Disadvantages:

- Sensitive to control group selection
 - Hunt for the ideal control group
- Standard DiD does not control for time-varying unobservable characteristics
 - Potential source of bias

Effectiveness: Synthetic Control Method

- Similar to difference-in-differences
 - Still exploiting the difference between pre/post and treated/untreated
- Estimating a counterfactual (Synthetic Control Unit):
 - All untreated plants are now included in the control group and given a weight
 - Weight matrix is defined such that the pre-treatment control group closely matches the pre-treatment treated group (CSA plants)
 - Weight matrix then used to predict outcome of interest in post-treatment period for the treatment group

Effectiveness: Synthetic Control Method


Advantages:

- Easy to interpret
- Addresses two concerns with DID
 - Control group selection (takes a data driven approach)
 - Control for time-varying unobservable characteristics

Disadvantages:

- Traditional large scale asymptotic inference does not apply
 - Placebo/Permutation tests
- Requires a lengthy, pre-treatment period for sufficient weighting/matching
- Computationally more demanding than DID

Effectiveness (SCM): $SO_2 \& NO_x$ Emissions

Leakage: Difference-in-Differences

Potential Leakage/Spillover Groups:

- South Carolina (β_4)
- Virginia (\$\beta_5\$)
- Tennessee (β_6)

Baseline Leakage DiD:

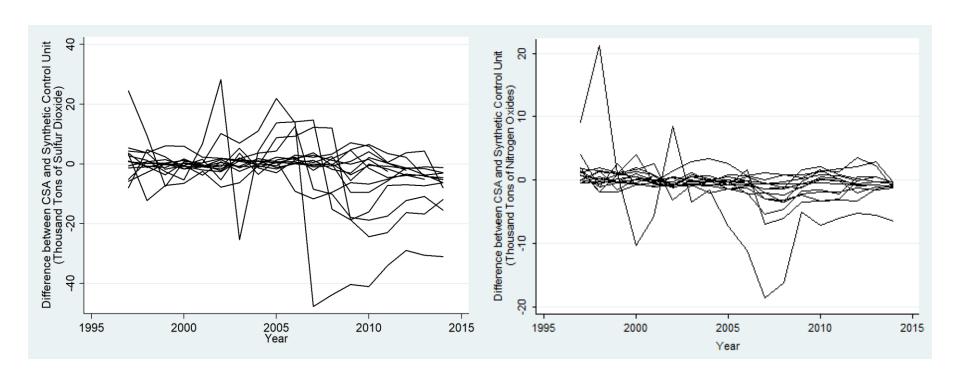
$$y_{it} = \beta_0 + \beta_1 CSA_i + \beta_2 Post_t + \beta_3 CSA_i * Post_t + \beta_4 SC_i * Post_t + \beta_5 VA * Post_t + \beta_6 TN * Post_t + \epsilon_{it}$$

Leakage (DID): SO_2 and NO_x Emissions

		SC	SC	VA	VA	TN	TN
		Level	Log	Level	Log	Level	Log
SO_2	CSA Effect	2.076	-0.0256	1.768	-0.0645	-71.99***	-0.518***
		(1.983)	(0.103)	(1.855)	(0.101)	(2.069)	(0.107)
NO_x	CSA Effect	1.372*	0.00241	0.871	0.0826*	-34.04***	-0.476***
		(0.741)	(0.0448)	(0.666)	(0.0438)	(0.786)	(0.0458)

Note: State-clustered standard errors in parentheses. *** p<1%, ** p<5%, and * p<10%.

Damages: Synthetic Control Method


Plant-Specific Treatment Effects:

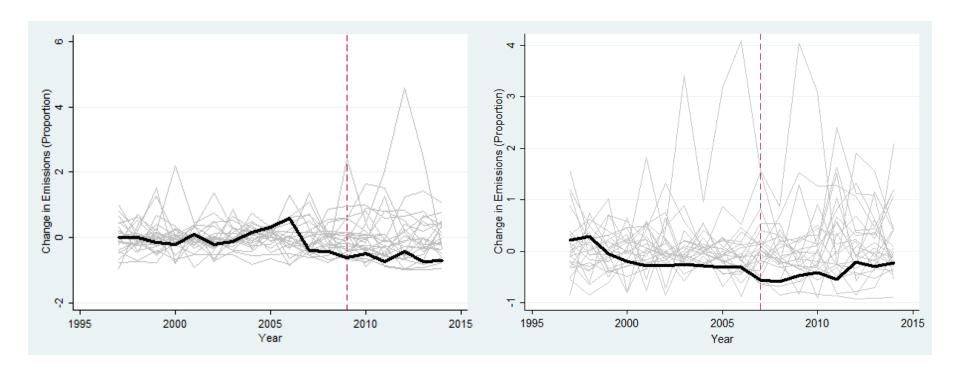
- Step 1: Define each CSA-plant as a separate treatment group
- Step 2: Apply Synthetic Control Method
- Step 3: Iterate over each plant for each outcome variable (i.e. pollutants)
- Step 4: Calculate plant-specific effect (difference between plant and SCU)

Estimating Damages:

- Apply MD estimates from Muller and Mendelsohn (2009)
 - County-level MD estimates by effective stack height
- Aggregate across all CSA-plants from 2005 to 2014

Damages (SCM): Plant-Specific Effects

Estimated Benefits (Avoided Damages)


	Gross Benefits (2014\$)
SO ₂	\$ 1.84 Billion
NO_{x}	\$ 0.04 Billion
Total	\$ 1.88 Billion

Note: Benefits are estimates of avoided damages due to reductions in emissions.

Sensitivity Analysis (SCM): Placebo Tests

- Define each control unit as the treatment group
- Apply SCM
- Iterate over each potential control unit
- Collect all SCM estimates for the control units into a single distribution
 - Partially represents the distribution of potential counterfactuals
- Significant effect of policy ⇒ Actual treatment group should be an outlier in the distribution of placebos

Sensitivity Analysis (SCM): Placebo Estimates

Conclusions

• How effective is the CSA in reducing emissions of SO_2 and NO_x ?

- $\sim 100,000$ ton annual reduction in SO_2 emissions
- $\sim 50,000$ ton annual reduction in NO_x emissions
- Both DiD and SCM estimated effects are smaller than previous studies

Were the emissions reductions offset by leakage?

- Little to no evidence of leakage (SC and VA)
 - Policy incentive to comply vs. leak
- Strong evidence of positive spillovers (TN reduced emissions)
 - Due to lawsuit and subsequent settlement

How do damages change after the CSA?

\$1.88 billion in avoided damages (gross benefits)

Conclusions

- An imperfect C&T policy can still be an effective C&T policy
- Expectations about regulated rates have an impact on firm decision making
- Aspects of the CSA that can be useful in crafting future C&T policies:
 - Policy aspects factored into firm decision-making:
 - Minimum compliance cost requirements
 - Mechanism for compliance cost recovery
 - Regulated-rates
 - Simplifying the emissions market by placing cap at utility level
 - Alleviates the need for a formal permit market

How can SCM be applied to other problems?

Requires:

- Treatment and Control units
- Multiple pre-treatment periods of observation
- Characteristics common to both treatment and control units
- Distinct policy change (treatment)

Ideal for:

- Small or aggregate treatment groups
- Municipal/County/State/Country/Regional level policies
- Long pre-treatment period of observation

Thank you!

Justin Larson 3040 E. Cornwallis Road, PO Box 12194 Research Triangle Park, NC 27709 USA

+1 (919) 541 1294

jularson@rti.org